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INTRODUCTION

“Endocrine disruptors” are exogenous compounds that negatively impact endocrine 
functions and demonstrate a definite cause-and-effect relationship in individuals, offspring, 
or subpopulations exposed to them.[1,2] Endocrine society defines EDC as “An Exogenous 
chemical, or mixture of chemicals, that interfere with hormone action.” They can originate 
from natural sources such as plants (phytoestrogens), animals, or humans. More commonly, 
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endocrine disruptors are of environmental origin , and 
are otherwise known as endocrine-disrupting chemicals 
(EDCs). Exposure to EDCs can occur through inhalation 
(e.g., plasticizers), oral (e.g., food), dermal (e.g., cosmetics), 
embryonic transfer (e.g., from mother), and transfer to 
offspring through breast milk.

The publication of Rachel Carson’s Silent Spring in 1962 
was a pivotal turning point that brought attention to the 
environmental and health impacts of synthetic pesticides, 
particularly dichlorodiphenyltrichloroethane (DDT). It 
highlighted the harmful effects on wildlife, particularly 
bird populations, and raised concerns about human cancer 
risks. This led to the nationwide ban on DDT in the United 
States and the creation of the Environmental Protection 
Agency.[3] The year 1971 was pivotal for the discovery of 
transplacental carcinogenic effect of diethylstilbestrol (DES), 
a synthetic estrogen given to pregnant women to prevent 
miscarriages at the time, leading to cancer and reproductive 
issues in the daughters of women who had taken the drug 
during pregnancy. This catastrophe emphasized the dangers 
of endocrine disruptors, especially during pregnancy.[4] In 
1991, the term “Endocrine Disruptor” was coined during the 
Wingspread Conference, recognizing chemicals that interfere 
with the hormonal system.[5]

EDCs have been increasingly recognized in our ecosystem 
since the discovery of their harmful effects. Their widespread 
presence in the environment raises major concerns about 
the impact of EDCs on human health, especially their role 
in the development of chronic conditions such as diabetes, 
obesity, and cardiovascular disease (CVD).[6-9] The health 
implications of EDCs also span across generations. There is 
mounting evidence linking preterm delivery and intrauterine 
growth restriction to in utero exposure to EDCs.[10-13]

Given the high prevalence of type  2 diabetes mellitus 
(T2DM) and macrovascular disease in contemporary society, 
it is imperative to understand the associations between 
environmental contaminants and these disease states to 
develop successful preventative measures and explore novel 
therapeutic strategies.

COMMON EDCs AND WHERE THEY ARE 
FOUND

EDCs are pervasive in nature and include phenols, 
phthalates, parabens, flame retardants, heavy metals, 
pesticides, perfluorinated chemicals, ultraviolet filter 
components, triclosan, and organochlorines. Among 
these, of particular concern are polychlorinated biphenyls 
(PCBs), polybrominated biphenyls, dioxins, bisphenols, 
DDT, vinclozolin, DES, and heavy metals, such as cadmium, 
mercury, arsenic, lead, manganese, and zinc. These chemicals 
are found in industrial products, agricultural pesticides, 

plastics, packaged foods, cosmetics, and pharmaceuticals.[14-16] 
EDCs are thought to number more than 4000 currently and 
their presence in the environment is being increasingly 
recognized. Pertinent EDCs present in the environment and 
their health implications are been listed in Table 1.[17]

CLASSIFICATION OF EDCs

EDCs can be classified as persistent EDCs and non-persistent 
EDCs. DDT, dichlorodiphenyl dichloroethylene (DDE), 
PCBs, polybrominated diphenyl ether, and per-  and 
polyfluoroalkyl substances (PFAS) are persistent EDCs, they 
can persist in the environment for decades.[18] This can occur 
secondary to bioamplification or biomagnification, which 
refers to an increase in the concentration of a substance as 

Table 1: Some common EDCs and their sources.

Common EDCs Sources Health implications

DDT, chlorpyrifos, 
atrazine, 2,4 D, 
glyphosate

Pesticides Obesity
Metabolic syndrome
Type 2 diabetes
Reproductive toxicity
Neurotoxicity

Lead, phthalates, 
cadmium

Children’s toys, 
feeding bottles, 
accessories, 
batteries

Neurotoxicity
Impaired development 
Oxidative stress 
Metabolic disruption 
Cardiovascular disease

PCBs, dioxins Industrial 
solvents

Immune dysfunction 
Thyroid dysfunction
Developmental delay 
Malignancy

BPA, Phthalates, 
Phenol

Plastics, 
food storage 
materials, 
reusable bottles

Insulin resistance
Obesity
Cardiovascular disease 
Hormonal imbalance

Brominated flame 
retardants, PCBs

Electronics, 
furniture 
and Building 
materials

Developmental delay
Thyroid dysfunction
Reproductive toxicity

Phthalates, 
parabens

Personal care 
products, 
medical tubing, 
plastic food 
containers, 
plastic wraps

Obesity 
Reproductive disorders 
Metabolic syndrome

Triclosan Anti-bacterial 
soaps, 
antiseptics

Thyroid dysfunction
�Antimicrobial resistance

Perfluorochemicals Textiles, 
clothing, non-
stick cookware

Hepatotoxicity 
Immune dysfunction 
Reproductive toxicity
Thyroid dysfunction

BPA: Bisphenol A, DDT: Dichlorodiphenyltrichloroethane, EDC: 
Endocrine-disrupting chemicals, PCBs: Polychlorinated biphenyls
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it moves up the food chain. This occurs when a pollutant is 
persistent; it cannot be, or is very slowly, broken down by 
natural processes. Hence, these persistent pollutants are 
transferred up the food chain faster than they are broken 
down. The extended latency interval between illness and 
exposure makes it challenging to establish a definitive cause-
and-effect relationship.[19]

Phenols, phthalates, parabens, acrylamide, and solvents are 
non-persistent EDCs. However, they can bioaccumulate 
in adipose tissue and lead to adverse health outcomes.[20] 
Bioaccumulation refers to the process where a concentration 
of a substance, typically lipophilic rather than hydrophilic, 
builds up in the tissues because it is absorbed more quickly 
than eliminated (eg: DDT in adipose tissues). EDCs can 
also be classified as per their health impact such as those 
causing cardiometabolic effects, effects on reproductive 
axis, etc., which are discussed in detail in the subsequent 
sections.

MECHANISM OF ACTION OF EDCs

EDCs can interfere with hormonal signaling in the body 
through various mechanisms, primarily by functioning 
as receptor agonists or antagonists. As receptor agonists, 
EDCs mimic the structure of natural hormones, binding to 
hormone receptors and enhancing or initiating hormonal 
responses. Conversely, as receptor antagonists, EDCs bind 
to the same receptors but block their activity, preventing 
the natural hormone from exerting its effects.[20] For 
nuclear hormone receptors, this interference extends to 
disrupting the receptor-hormone complex’s ability to 
bind to DNA, thereby altering the transcription of gene 
cascades and affecting downstream biological processes. 
These actions underline the significant impact of EDCs 
on endocrine system regulation and gene expression. The 
ways in which EDCs interact with cell surface and nuclear 
receptors to cause downstream effects are demonstrated in 
Figure 1.

PATHOPHYSIOLOGICAL MECHANISMS OF 
EDCs AFFECTING CARDIOVASCULAR SYSTEM

EDCs can impact cardiovascular function through several 
molecular and cellular mechanisms which primarily involve 
the disruption of hormonal signaling pathways. The major 
mechanisms by which EDCs influence cardiovascular health 
have been summarized in Figure 2, and discussed in detail as 
follows:
•	 Hormone Receptor Binding and Activation: Many 

EDCs either mimic or block the actions of natural 
hormones by interacting with hormone receptors, which 
play a key role in cardiovascular functions. Estrogens 
support cardiovascular health by regulating vascular 

tone, cholesterol metabolism, and endothelial function. 
Bisphenol A (BPA) can bind to estrogen receptors, 
leading to abnormal signaling, which can result in 
arterial stiffness, endothelial dysfunction, and altered 
lipid metabolism.[21] EDCs, such as certain pesticides, 
can disrupt androgen signaling, which may impair 
vascular function and elevate the risk of hypertension 
(HTN) and CVD in males. PCBs can interfere with 
thyroid hormone signaling, leading to changes in heart 
rate, cholesterol metabolism, and an increased risk of 
atherosclerosis and arrhythmias.[15]

•	 Oxidative Stress and Inflammation: Many EDCs elevate 
oxidative stress levels in cardiovascular tissues. Excessive 
production of reactive oxygen species damages proteins, 
lipids, and endothelial cells, contributing to HTN 
and atherosclerosis.[9] Chronic vascular inflammation 
may also arise from EDC-induced activation of pro-
inflammatory signaling pathways, such as the nuclear 
factor kappa-light-chain-enhancer of activated B-cells 
pathway. This persistent inflammation plays a crucial 
role in the progression of atherosclerosis, cardiac 
remodeling, and endothelial dysfunction.[22]

•	 Endothelial Dysfunction: EDCs like BPA reduce 
nitric oxide (NO) bioavailability by inducing 
oxidative stress or disrupting the NO synthase (NOS) 
pathway, which impairs vasodilation and elevates 
blood pressure.[23] Prolonged exposure to EDCs can 
compromise the integrity of endothelial cells, increasing 
vascular permeability and facilitating the development 
of atherosclerosis.[24]

•	 Altered Lipid Metabolism: EDCs, including phthalates 
and BPA, can interfere with peroxisome proliferator-
activated receptors (PPARs) which leads to triglyceride 
accumulation, decreased high-density lipoprotein 
(HDL), and increased low-density lipoprotein (LDL) 
cholesterol, all of which contribute to the development 
of atherosclerosis.[25]

•	 Insulin Resistance (IR): EDCs such as phthalates and 
BPA can disrupt insulin signaling, leading to IR.[7,26] 
Furthermore, EDCs may impair cellular glucose uptake, 
increasing the risk of hyperglycemia and diabetes.[27]

•	 Obesogens: Some EDCs, known as “obesogens,” promote 
adipogenesis, resulting in obesity, which is a major risk 
factor for CVD, HTN and heart failure.[28] Exposure to 
obesogens during sensitive periods of early development 
predisposes individuals to weight gain due to changes in 
metabolic set-points.[29,30]

•	 Mitochondrial Dysfunction: EDC-induced mitochondrial 
dysfunction can lead to the apoptosis of cardiomyocytes 
and endothelial cells, which contributes to cardiac 
remodeling and loss of vascular integrity.[31]

•	 Epigenetic Modifications: EDCs can alter DNA 
methylation patterns and histones, affecting the 
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expression of genes involved in regulating blood pressure, 
cholesterol metabolism, and vascular function.[32] These 
epigenetic modifications may be passed down to future 
generations, potentially increasing the risk of CVD 
in children who have not been directly exposed to the 
chemicals.[33]

•	 Miscellaneous actions: EDCs, such as BPA and certain 
heavy metals, can elevate angiotensin II levels, contributing 
to HTN and cardiac hypertrophy.[34] In addition, some 
EDCs can elevate aldosterone secretion, leading to HTN 
and a higher risk of heart failure by promoting sodium 
and water retention.[35] EDCs, such as lead and cadmium, 
can disrupt calcium homeostasis and cause arrhythmias, 
poor cardiac muscle contractility, and impaired vascular 
function by interfering with calcium signaling.[36]

SPECIFIC EDCs AND CARDIOVASCULAR 
EFFECTS

Lead

Lead accumulates in soft tissues and bones, where it can 
persist for over 25  years, posing long-term health risks. It 
promotes free radical damage, disrupts NO signaling, and 
induces inflammation, all of which contribute to a higher risk 
of CVD and increased cardiovascular mortality, particularly 
in individuals with occupational lead exposure.[37,38]

Cadmium

Cadmium exposure induces oxidative stress, endothelial 
dysfunction, and inflammation. Large epidemiological 
studies have consistently linked cadmium exposure to an 
increased risk of HTN, myocardial infarction (MI), CVD, 
and higher mortality rates.[39] Cadmium has also been 
associated with higher prevalence of atherosclerotic plaque 
formation.[40,41] In addition, cadmium presence in carotid 

Figure 1:  Mechanisms of action of endocrine disrupting chemicals.
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Figure 2: Mechanisms of impact of endocrine disrupting chemicals 
on cardiovascular health.
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plaques is associated with increased plaque vulnerability, 
further elevating the risk of cardiovascular events.[42]

BPA

BPA, a monomer used in polycarbonate plastics, is widely 
prevalent in the environment.[43] A study utilizing data from 
the US 2003–2016 National Health and Nutrition Examination 
Surveys (N = 11,857) found that individuals in the highest 
quartile of urinary BPA levels had a higher incidence of MI 
and stroke. In addition, increased urinary BPA was associated 
with a 13% higher risk of developing CVDs.[44] Higher urinary 
BPA levels have been associated with increased risk of HTN, 
obesity, and type 2 diabetes (T2D).[45,46]

Phthalates

Phthalates are widely used in various consumer goods, 
plastics, and medical equipment.[47] Phthalate metabolites 
have been associated with IR and abdominal obesity, increased 
cardiovascular mortality in affected populations.[48,49] 
Proposed mechanisms for phthalate-associated metabolic 
disruption include alterations in hepatic metabolism, 
enhanced adipose tissue differentiation and dysbiosis of gut 
microbiota.[50-52] Phthalates may also elevate blood pressure 
through altered phosphorylation of endothelial NOS and 
induction of the angiotensin type 1 receptor.

Pesticides

According to a recent meta-analysis by the National 
Toxicology Program (NTP), there is sufficient evidence 
to support a positive association between T2DM and 
persistent organic pollutants (POPs). These diabetogenic 
POPs include the pesticide DDT and its metabolite DDE, 
along with pollutants from the dioxin and PCB families.[53] 
Organochlorine pesticides and their metabolites (e.g., DDE) as 
well as various PCB congeners have been positively associated 
with obesity, abdominal adiposity, and components of the 
metabolic syndrome (MS).[54-56] The Hispanic Community 
Health Study, which included 7404 adult Hispanic and Latino 
participants, investigated the effects of occupational exposure 
to pesticides and solvents on cardiovascular health, and found 
that individuals exposed to these substances had a higher risk 
of HTN and dyslipidemia. In addition, these exposures were 
linked to a two-fold increase in the risk of CVD and a six-fold 
higher risk of cerebrovascular disease.

Arsenic

NTP identified a potential link between arsenic, a common 
groundwater contaminant, and the development of diabetes 
with stronger associations observed at higher exposure 
levels.[57] Inorganic arsenic has been positively correlated with 

carotid intimal medial thickness and elevated serum levels of 
matrix metalloproteinase-9, a biomarker for CVD.[58,59] In a 
study on endemic arsenic exposure in Bangladesh, arsenic 
levels were found to be associated with lower levels of HDL 
and an increase in atherogenic oxidized LDL, despite lower 
total levels of LDL and total cholesterol (TC).[60]

Particulate matter (PM)

PM, a component of tobacco smoke and ambient air 
pollution, is linked to significant long-term cardiovascular 
and metabolic consequences.[61-64] Exposure to PM of either 
the 2.5 μm (PM2.5) or 10 μm (PM10) size has been associated 
with impaired insulin sensitivity or an increased incidence of 
diabetes.[65] Tobacco smoke remains a significant risk factor 
for atherosclerosis, CVD, and metabolic dysfunction.[66]

Hence, there is ample evidence from population-based data 
to support the idea that numerous environmental pollutants 
have the potential capacity to promote the development of 
diabetes and other risk factors associated with atherosclerosis, 
ultimately predisposing the individual to develop CVD. 
Pertinent EDCs with adverse cardiovascular effects are 
shown in Table 2.

DIABETOGENIC AND OBESOGENIC EFFECTS 
OF EDCS

The Parma Consensus 2015 introduced the “Metabolic 
Disruptor Hypothesis,” which explains how EDCs interfere 
with human metabolism, contributing to disorders such 
as obesity, type  2 diabetes, and MS. EDCs disrupt the 
hypothalamus, altering gene expression and leptin signaling, 
leading to metabolic dysregulation. In adipose tissue, they 
promote fat accumulation and IR. In the liver, EDCs cause 
epigenetic changes, promoting steatosis and lipogenesis. 
EDCs also impair insulin production in the pancreas, causing 
oxidative stress and β-cell exhaustion. In skeletal muscle, 
EDCs disrupt insulin signaling, impair glucose uptake, and 
reduce antioxidant defenses. In addition, EDCs affect the 
gut microbiota, altering its composition and contributing 
to metabolic disorders. Together, these disruptions lead to 
conditions such as obesity, MS, non-alcoholic fatty liver 
disease, and T2D, illustrating the broad impact of EDCs on 
human health.[67]

Evidence summarizing the metabolic implications of EDCs 
have been discussed below:

EDCs and risk of obesity

Studies such as the Nurses’ Health Study, Women’s Health 
Initiative, and Prospective Investigation of the Vasculature 
in Uppsala Seniors (PIVUS) study found an association 
between urinary concentrations of phthalate metabolites and 
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weight gain.[68] The POUNDS-LOST Trial showed that PFAS 
exposure was associated with reduced resting metabolic rate.
[69] A study involving 2719 individuals found that higher 
concentrations of Di-(2-ethylhexyl) phthalate (DEHP) were 
associated with obesity with an odds ratio of 2.2 for MS.[70]

EDCs and risk of T2D

Higher urinary BPA levels are associated with IR and 
hyperinsulinemia with strongest link with diabetes 
risk.[7,70] A meta-analysis of seven studies confirmed an 
association between phthalate exposure and increased 
T2D risk.[71] Reduced beta-cell function is linked to 
childhood exposure of PFAS.[69]

EDCs and risk of gestational diabetes mellitus (GDM)

The National Institute of Child Health and Human 
Development (NICHD) Fetal Growth Study and a meta-
analysis of 25 studies found that several congeners of PCBs, 
PFAS, and PBDEs were associated with increased risk of 
GDM.[72,73] Phthalate metabolites were correlated with higher 
glucose levels and an increased risk of GDM.[74]

TRANSGENERATIONAL IMPLICATIONS OF 
EDCs

The Developmental Origins of Health and Disease hypothesis 
posits that exposure to environmental factors, including 

Table 2: Common EDCs postulated to cause cardiovascular effects.

EDC Source Cardiometabolic effects Mechanisms 

Lead Occupational exposure, 
environmental sources

• Cardiovascular disease (CVD)
• Increased cardiovascular mortality

• Promotes free radical damage
• Disrupts nitric oxide (NO) signaling 
• Inflammation

Cadmium Smoking, industrial 
waste

• Hypertension (HTN) 
• Myocardial infarction (MI)
• CVD
• Higher mortality rates 

• Oxidative stress 
• Endothelial dysfunction 
• Inflammation
• �Atherosclerotic plaque formation and 

Vulnerable carotid plaques
Bisphenol A (BPA) Plastics, food packaging, 

environment
• MI 
• Stroke 
• Hypertension
• Obesity
• Type 2 diabetes 
• CVD 

• Disrupts estrogen signaling
• Promotes insulin resistance
• Alters lipid metabolism
• Oxidative stress

Phthalates Plastics, consumer 
goods, medical 
equipment

• HTN
• Cardiovascular mortality
• Metabolic syndrome 

• Decreases NO bioavailability
• Induces angiotensin type 1(AT1) receptor 
• Disrupts lipid metabolism 
• Gut microbiota dysbiosis

Pesticides e.g., 
DDT, DDE

Agriculture, 
Environmental residues

• HTN
• Dyslipidemia
• Type 2 diabetes
• Obesity 
• 2-fold increase in CVD risk
• 6-fold higher risk of cerebrovascular 
disease

• �Through persistent organic pollutants 
(POPs), 

• �Impacts lipid profiles and metabolic 
regulation

Arsenic Groundwater 
contamination

• Elevated CVD risk • �Increased carotid intimal medial thickness 
(cIMT), atherosclerosis

• Lower HDL, higher oxidized LDL
• �Increased serum matrix 

metalloproteinase-9 
• Promotes oxidative stress

Particulate Matter 
(PM)

Air pollution, tobacco 
smoke, environment

• Long-term CVD risks
• HTN
• Type 2 Diabetes 
• Atherosclerosis 

• Increases inflammation
• Oxidative stress
• Impaired insulin sensitivity 
• �Impacts lipid and glucose metabolism

DDT: Dichlorodiphenyltrichloroethane, DDE: Dichlorodiphenyl dichloroethylene, EDC: Endocrine-disrupting chemicals, HDL: High-density lipoprotein, 
LDL: Low-density lipoprotein
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EDCs, during critical periods of prenatal and early life 
development can result in permanent changes in the body’s 
structure, physiology, and metabolism, which can predispose 
individuals to chronic conditions such as CVDs, diabetes, and 
obesity later in life. Important transgenerational implications 
of EDCs have been summarized below:

Risk of low birth weight (LBW)

A California study involving 295,387 pregnant women 
found an association between pesticide exposure and 
LBW.[75] A meta-analysis of 24 studies revealed that birth 
weight decreased by 10.5  g for each ng/mL increase in 
perfluorooctanoic acid (PFOA) concentration in maternal or 
umbilical cord blood.[76]

Preterm birth

The LIFECODES study highlights the significant impact of 
phthalates and PFOA, on birth outcomes, with a strong link 
between phthalate exposure and preterm birth.[77]

Childhood adiposity

Childhood adiposity has been strongly linked to prenatal 
exposure to various EDCs. A  meta-analysis of 10 cohort 
studies found that each 1 ng/mL increase in maternal blood 
levels of PFOA correlated with a 0.10 unit rise in body 
mass index Z-score and a 25% increase in the prevalence of 
overweight children.[78] The Project Viva study found that 
prenatal and mid-childhood exposure to PFAS was linked 
to higher TC, triglycerides, and liver function tests in boys 
at age 8.[79] Prenatal exposure to BPA has been associated 
with an increased risk of childhood obesity across several 
birth cohorts, contributing to hyperleptinemia, elevated 
blood pressure, and early weight gain.[80-83] The Center for 
the Health Assessment of Mothers and Children of Salinas 
(CHAMACOS) study in Italy found that prenatal exposure 
to phthalates, phenols, or DDE was linked to higher obesity 
rates at ages 5 and 12.[84]

BPA mimics estrogen, activates PPARγ, and promotes 
differentiation of preadipocytes into mature adipocytes, 
prenatal exposure alters metabolic “set points,” affects gene 
expression through epigenetic modifications, and disrupts 
hypothalamic leptin signaling, leading to overeating. It also 
induces IR, glucose intolerance, and fat accumulation while 
increasing oxidative stress and inflammation, creating an 
obesogenic environment.

Hence, the metabolic effects of EDCs are not only limited to the 
index exposure but also span across generations, underlining 
the importance of exposure prevention especially at critical 
time points such as during growth, puberty, and pregnancy.

EFFECTS OF EDCS ON REPRODUCTIVE 
HEALTH

EDCs significantly impact female reproductive health, 
causing infertility, hormonal imbalances, polycystic ovarian 
syndrome, endometriosis, and uterine fibroids. These 
effects, coupled with rising EDC exposure, contribute to 
declining global fertility rate.[85] EDCs adversely affect male 
reproductive health, causing precocious puberty, delayed 
puberty, and infertility. These effects are linked to exposure 
to phthalates, PCBs, pesticides, pharmaceuticals, and other 
toxic substances.[86]

HOW TO AVOID EXPOSURE TO EDCs?

EDCs have well-documented negative health consequences, 
especially on the cardiovascular, metabolic, and 
reproductive systems; thus, there is an urgent need to 
minimize exposure. Protecting vulnerable groups, such as 
children and pregnant women, is all the more critical to 
minimize their effects on current and future generations. 
The pervasive nature of EDCs makes this task very 
challenging, and hence, proactive measures must be 
implemented both at individual level, through lifestyle 
changes to reduce exposure and at the regulatory level, with 
strict policies and enforcement by concerned authorities to 
mitigate these risks.

Strategies to mitigate EDC exposure at individual level:
•	 Avoiding smoking and secondhand smoke:[14]

•	 Food handling:
•	 Prefer organic and pesticide-free produce[87]

•	 Avoiding fast foods and processed foods[88]

•	 Limiting foods high in animal fat[89]

•	 Avoiding plastic food containers/bottles
•	 Avoiding microwaving in plastic containers[90]

•	 Replacing non-stick cookware when damaged[91]

•	 Checking ingredient list in cosmetics and skin care 
products. Choosing products that are labeled as 
“paraben-free” or “phthalate-free”[92]

•	 Avoiding pesticide use around home[93]

•	 Using volatile organic compound-free and water-based 
paints[94]

•	 Implementing the tenets of 4 R’s: Reduce, reuse, recycle 
and recover.

Simple swaps to minimize EDC exposure in daily life are 
shown in Figure 3.

Strategies for reducing EDC exposure at regulatory level:
•	 Strengthening premarketing studies and regulations
•	 Promoting research for safer alternatives
•	 Measures to decrease production of EDCs and entry into 

ecosystem
•	 Initiatives for raising public awareness
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•	 Strong legislative interventions for mitigating exposure 
of the general public.

The unfortunate fact remains that EDCs are pervasive 
and cannot be completely removed or avoided. However, 
individuals and societies can play a crucial role in 
minimizing EDC exposure and its associated health risks 
by adopting these practices and advocating for stricter 
regulations.

CONCLUSION

EDCs are widespread and present in everyday items like 
plastics, food packaging, personal care products, and even 
water. Their harmful effects can extend across generations, 
increasing the risk of obesity, T2D, and other chronic 
conditions. While small changes in daily lifestyle, such as 
reducing the use of plastics, choosing organic products, 
and reading product labels, can help reduce exposure at an 
individual level, a holistic solution requires steps to be taken 
at governmental level. Regulatory bodies and lawmakers must 
implement stricter guidelines and promote safer alternatives to 
mitigate the long-term impact of EDCs. Hence, protecting the 
current and future generations from these chemicals demands 
collective efforts from both individuals and policymakers.
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